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Jeffery ’s solution in bi-polar co-ordinates of the two-dimensional Stokes equations 
cannot be applied to the low-Reynolds-number flow past two parallel circular cylinders 
because of severe mathematical difficulties. These difficulties can be overcome by 
considering the flow field far from the cylinders and then modifying the solution near 
the cylinders so that it becomes the inner expansion for an application of the method 
of matched asymptotic expansions. After the calculation of‘the drag, lift and moment 
coefficients of two adjacent equal circular cylinders to O( 1) in the Reynolds number 
R, the analysis is extended to incorporate partially the effects of fluid inertia of order R. 
The results show fairly good agreement with Taneda’s experimental data. 

1. Introduction 
In  this paper we study two-dimensional low-Reynolds-number flow past two 

parallel circular cylinders. This has previously been analysed on the basis of Oseen’s 
approximate equations -linearized versions of the Navier-Stokes equations (Fujikawa 
1956, 1957; Kuwabara 1957; Yano & Kieda 1980). The analyses were made using 
polar co-ordinates and are actually perturbation solutions which are valid only for the 
case of two circular cylinders a great distance apart. A more appropriate approach to 
this problem is to adopt the matched-asymptotic-expansion method due to Kaplun 
(1957) and Proudman & Pearson (1957), developed mainly through studies of the 
low-Reynolds-number flow past a single circular cylinder or sphere. Furthermore, it is 
more advantageous to employ bi-polar co-ordinates to take into account the treatment 
of the boundary conditions on the two circular cylinders. This will be especially so 
for the caae of two circular cylinders in close proximity to each other, when the existing 
analyses in the Oseen approximation lose their accuracies. 

Provided that the Reynolds number based on the distance between the axes of the 
cylinders is sufficiently small, the flow in a region near the obstacles is governed by the 
Stokes equations in the first approximation. In this paper we consider the description 
of this Stokes flow in terms of bi-polar co-ordinates, which will assist the derivation of 
analytical expressions for the forces and moments exerted on the obstacles at small 
Reynolds numbers, when the method of matched asymptotic expansions is appro- 
priate for our problem. To make this possible, it is, of course, assumed that the method 
for solving a general Stokes-flow problem around two circular cylinders is established. 
For three-dimensional Stokes flows around two spheres, a method has been well 
established since the pioneering works of Stimson & Jeffery (1926) and O’Neill(l964); 
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but this is not generally the case €or Stokes flows around two circular cylinders in 
two-dimensional problems. There still seems to  be some ambiguity in the existing 
treatment of Stokes flows using bi-polar co-ordinates. The main purpose of this paper 
is to present a resolution of these difficulties through the analysis of our particular 
problem. 

One fairly general solution of the two-dimensional Stokes equations was found in 
bi-polar co-ordinates by Jeffery (1922) in his analysis of the Stokes flow between two 
eccentric circular cylinders rotating about their axes. This flow region is bounded, but 
applications of the solution to Stokes flow around two circular cylinders in an un- 
bounded fluid region were made by Raasch (1961) and Wakiya (1975) to  calculate the 
forces and moments acting on the obstacles in a simple shearing flow. Wakiya also 
treated the Stokes flow generated by a certain class of rigid-body motions of two 
circular cylinders in an otherwise stationary infinite fluid. As pointed out by Jeffery 
himself, however, his solution is actually applicable only for those flows in which the 
resultant force on the system of two circular cylinders vanishes identically. Therefore, 
simple use of Jeffery’s solution without modification cannot describe correctly our 
Stokes flow in which the sum of the drag forces exerted on the obstacles apparently 
does not vanish. The origin of such an unsatisfactory property of the solution is 
examined, and necessary modifications are made to obtain appropriate Stokes 
solutions as the inner expansion in an application of the method of matched 
asymptotic expansions. 

I n  terms of the modified solution we first calculate the drag, lift and moment co- 
efficients of the cylinders to o( 1 )  in the Reynolds number. They show essentially the 
same properties as those for the Stokes flow past two spheres, except for their depend- 
ences on the Reynolds number due to the singular nature of the two-dimensional 
problem. In particular they contain no effects of fluid inertia in the flow near the 
cylinders. However, since the effects are interesting on physical grounds and actually 
not negligible, we attempt to  make an extended analysis to incorporate them partially. 
It will be found that, to O(R) in the Reynolds number, they can be derived from the 
Stokes flow around the cylinders as well, but in this case in a purely stretching flow 
with its second principal axis parallel to the uniform stream. I n  such a flow the 
cylinders experience lateral forces which are neglected in the analysis to  O( 1).  

Although, in this paper, the discussion is made exclusive of the derivation of the 
above hydrodynamic characteristics, it is worth mentioning the interesting patterns 
of streamlines appearing in the cusp region between the two adjacent circular cylinders. 
The existence of eddies in Stokes flows was discovered by Dean & Montagnon (1949) 
for the flow region within a corner formed by two intersecting planes at a sufficiently 
small angle. This was verified in analytical manner by Moffatt (1  964), and he showed 
the formation of an infinite sequence of eddies whose strength diminishes exponentially 
approaching the corner. Since then a number of studies of this topic have been per- 
formed, examining a variety of other flow geometries and the way in which Moffatt 
eddies can be formed there. In  particular, Davis et al. (1976) examined the process of 
formation of Moffatt eddies for the axisymmetric Stokes flow past two equal spheres 
as the spacing between them is decreased. They found that the repeating process of 
the formation of a pair of eddies attached to the facing sides of the spheres and the 
coalescence of the eddies a t  the midpoint of the spheres, as the spacing between the 
spheres decreases, results finally in the Moffatt eddy pattern in the neighbourhood of 
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the point of contact of the spheres. On the other hand, m for our two-dimensional 
problem of the Stokes flow past two equal circular cylinders, Dorrepaal & O’Neill 
(1979) have treated a special case of the cylinders with the plane containing their axes 
perpendicular to the uniform stream, and found as a new feature the formation of free 
eddies in the flow not attached to any wall. Although there seemingly remains a 
similar problem for two cylinders in a uniform stream impinging at arbitrary incidence, 
the flow structure near to close cylinders would generally be a combination of free 
eddies and Moffatt-type eddies in the region where the cylinders are closest. For 
further analyses of related problems, and for more complete reviews of the subject, see 
Jeffrey & Sherwood (1980), Moffatt & Duffy (1980) and Jeffrey & Onishi (1981). 

2. Presentation of the problem 
The geometry of the flow to be considered is sketched in figure 1. A uniform stream 

with speed W at infinity impinges on two equal circular cylinders of radius a, and with 
parallel axes separated by a distance d .  We denote by CT the angle between the direc- 
tions of the uniform stream and of the positive x-axis in the plane containing the axes 
of the cylinders. 

We shall employ the polar co-ordinates ( r ,  0) as well as the Cartesian co-ordinates 
(x, y). The co-ordinates r = (x, y )  and r are assumed to be non-dimensionalized by d ,  
and the stream function $ by Wd.  The Reynolds number is accordingly defined by 

R = Wd/v ,  (1) 

which is assumed to be much smaller than unity. 

Navier-Stokes equation 
Our problem is, in the limiting cases of R -+ 0, to find an approximate solution to the 

w = RJW, W), (2) 

with the no-slip condition on each cylinder and a uniform stream at infinity. A general 
approach to this problem has been developed mainly through studies of the low- 
Reynolds-number flow past a single circular cylinder or sphere. It is the method of 
matched asymptotic expansions due to Kaplun (1957) and Proudman & Pearson 
(1957). 

In  the method, the space round the cylinders is divided into two separate but over- 
lapping regions, and an appropriate perturbation scheme relevant for each region is 
considered. 

(i) In the inner region which satisfies the condition Rr < O( l), the Stokes equations 
are the first good approximations to the full Navier-Stokes equations, and the stream 
function is expanded in the following form : 

where 

This inner expansion should be valid asymptotically as R+O for fixed r, and each 
function $,, involved must satisfy the no-slip conditions on both cylinders. 

I2 FLI  131 
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FIGURE 1 .  Flow geometry and co-ordinate systems. 

(ii) In  the outer region Rr 2 O( l ) ,  where inertia forces must be taken into account, 
the disturbed flow is described in the first approximation by the Oseen equations. In 
terms of the outer variables defined by 

f = R r ,  Y = R $  (4% b )  
we here consider the expansion 

m 

Y(f;R) = fs in(8-a)+ Fn(R)Y,(F). 
n = l  

This outer expansion should be valid asymptotically as R+O for fixed F. Since the 
leading term represents the uniform stream, each function Y, for the disturbed flow 
must vanish at infinity. 

The expansions (3)  and (5) are supposed to be derived from the same exact solution 
of the Navier-Stokes equations, so they must match each other in the region R - O( 1 )  
where the two regions overlap. This matching condition yields further boundary 
conditions for each expansion, and enables us to determine its successive terms 
alternately. 

Now, since the flow near the obstacles is dominantly effected by their geometry, it 
will be advantageous in its description to use bi-polar co-ordinates ( 6 , ~ )  defined by 

(6) 
c sin7 

y = rsin0 = - c sinh6 
x = rcosd = - 

d cash 6 - cos 7' d cash 6 - cos 7 

(-a < 5 < +m, -7r < 7 < +n) 
in which the two equal circular cylinders are expressed by the two co-ordinate surfaces 
5 = k a (a > 0) satisfying the conditions 

(7) 

On the other hand, the flow far from the obstacles should not depend critically on 
their geometry. The presence of the obstacles plays first of all a role as a point-force 
source, and the equivalent flow could be realized by allowing an appropriate force to 

a = c cosech a, d = 2c coth a. 
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act on the fluid at the origin. Hence for the description of the far flow field it will be 
sufficient to consider those solutions with singularities at the origin, and the most 
suitable co-ordinates are the polar co-ordinates ( r ,  8). 

It is therefore natural to employ the bi-polar and polar co-ordinates in the inner 
and outer regions respectively, and to use, in applying the matching condition, a 
transformation between the two co-ordinate systems such that it is asymptotically 
valid in the overlapping region as R-+ 0. This transformation can be derived from the 
asymptotic form of (6) as r+m. In fact, since infinity ( r  = co) corresponds to the 
point (6 = 0 , y  = 0) and about this point (6) can be approximated by 

then we have, after the substitution of these into (4a), 

where i. should be regarded as O(1) (and the omitted terms are O(RS), and are not 
relevant to our later discussion). 

3. Oseen solution 
The general solution of the Oseen equations in polar co-ordinates ( r ,  8) has been 

presented by Tomotika & Aoi (1950). The relevant part in the solution for our later 
discussion is the same as that used in the matched-asymptotic analysis of the low- 
Reynolds-number flow past a single circular cylinder, and is given by 

An = 2KlIn+KO(In-l+In+J, Xn = KO(In-l-In+l), 
where In and K n  are respectively the first and second kinds of modified Bessel func- 
tions of order n. 

4. Stokes solution 
In this section we examine the general form of the Stokes solution that is appropriate 

to describe the flow in the inner region. It would be better to start with the derivation 
of the general solution to the two-dimensional Stokes equations in bi-polar co- 
ordinates. The process will reveal the origin of the difficulties encountered in the 
application of the existing bi-polar co-ordinate Stokes solution to our problem, and 
will guide the way to overcome them. 

Given the general solution f of the Laplace equation 

vy= 0 (11)  

we can construct the general solution $ of the bi-harmonic equation V4$ = 0 in the 
linear combination of the functions f, xf, gf and ry. Let us consider this for the general 
Stokes solution in bi-polar co-ordinates ( E ,  y), in which (1  1) is written in the form 

12-2 



350 A .  Umemura 

We first take up the separable form of the general solution f to (12). The solution, 
which satisfies the cyclic condition in y, is easily obtained as 

m m 

f = dt+ (a, cosh nE + en sinh nt) COB ny + C. (a; cosh nE + &; sinh nE) sin nr, 
n=l n=l 

where we have omitted the constant term on account of the arbitrariness of the 
additive constant in the stream function. The Stokes solution then becomes 

4 = #J = AE(coshE-cosr)+Bsinh5+CEsinhg+D[sinr 
m 

+ C [a,cosh(n+ l)~+b,sinh(n+l)~+c,cosh(n-l)[+d,sinh(n-i)g]cosn~ 
n= 1 

+ [a; cosh (n + 1)  5 + bk sinh (n + 1) 6 + ck cosh (n - 1) 5 + dk sinh (n - 1)  51 sin ny, 
I L = l  ._ - 

when we put 

The solution (14) was first presented by Jeffery (1922) to describe the Stokes flow 
between two eccentric circular cylinders (expressible by two co-ordinate surfaces 
[ = & and Ce ( > 0)) rotating about their axes. 

The solution (14), which was complete for the flow in the bounded region above, is, 
however, not complete over the whole fluid region exterior to our circular cylinders. 
Its completeness will break down a t  infinity. To see this, let us examine the asymptotic 
form of the stream function (15) with (14) as r-+oo. By use of (8) we have 

00 00 m 

C ( a n + c n ) + x  B+  C {(nfI)b,+(n-i)d,}]+y n= X 1 n(ak+ck), (16) 
Cn=1 [ n = l  

where we have omitted those terms that converge at infinity. The first term expresses 
a rigid-body rotation, and the second and third, uniform translations in the y-  and 
x-directions respectively. No other diverging terms appear, implying that (14) cannot 
describe any flow at infinity but only rigid-body motions. Besides, the rigid-body 
motions expressed by (16) cannot be arbitrary. This is evident from the very fact that 
(14) was complete in Jeffery’s analysis cited above. The arbitrary constants appearing 
in the solution (14), and therefore the coefficients in (16), are all determined irrespec- 
tively of the boundary condition at infinity if the boundary conditions on ‘any’ two 
circular cylinders are specified. 

It will be also of interest to examine the forces acting on the cylinders. Generally, the 
x- and y-components of the forces on the two equal circular cylinders 5 = f a and the 
moments about their axes in the anticlockwise direction, in the Stokes approximation, 
are calculated in terms of the function 4 in (15) as follows: 

I 
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where p = pv denotes the viscosity of fluid, and the multiplying factor W is due to the 
non-dimensionalization of the stream function by Wd.  The substitution of (14) into 
(17) leads to the expressions 

F!$) = & 4npD W ,  Pi*) = T 4npC W, 

M(*) = - 4 n p [  k A sinh a + C cosh a] W, 

(18a, b)  

(W 
and from (18a, b) the resultant force on the system of two cylinders is found to vanish 
identically. This implies that simple use of (14) does not allow us to analyse correctly 
those flows with a non-zero resultant force on the system. In particular, this is the 
case for our Stokes flow. 

Such unsatisfactory properties of the solution (14) come apparently from the choice 
of the separable form of the solution (13) to the basic Laplace equation (12). In  this 
respect we should note that the general polar-co-ordinate Stokes solution 

q2 = 2Lr2h r + 2(P cos 8- Q sin 8) r In r + 2 r  lnr  

which is derived using the same procedure, is complete over the whole fluid region 
interior or exterior to a single circular cylinder. 

The diverging terms missing from the harmonic function (13), which are not in the 
form of separation of variables, can be obtained by differentiating with respect to 
the variables f and 7 the function In (cosh f - cos 7) in the fundamental solution of the 
Laplace equation 

(20) In - r  = *In (cosh f + cos 7) - 4 In (cosh f - cos 7). 

Among the diverging Stokes solutions constructed with their aid, the most important 
are the terms 

[ L ( c o s h f + c o s ~ ) + P s i n h f - Q s i n ~ +  ~(coshf-cosv,~)]ln(coshf-cos~), (21) 

which correspond respectively to the first four terms of (19) in their behaviours at 
infinity. They contribute to the hydrodynamic characteristics of the two cylinders. 
In fact the expressions for the forces and moments acting on the cylinders now become 

(22) M ( 9  = - 4np[ ( L  + I? k A) sinh a + (C f P) cosh a] W, 

and it is found that (14) supplemented with (19) enables us to treat the case of non-zero 
resultant force on both cylinders. 

The terms involving the coefficients P and Q are called the Stokeslets, and they are 
related with the y-  and x-components of the resultant force on the two cylinders. Now 
we consider the form of the solution that describes our Stokes flow past two equal 
circular cylinders. At this stage it will be instructive to  recall a fundamental property 
of the Stokes flow past a single circular cylinder; the force exerted on the cylinder 
appears in connection with the Stokeslet 2(Pz - Qy) In r that causes the logarithmic 
divergence of the velocity at  infinity. Such a diverging behaviour in the far Stokes 
flow is, however, not restricted to this single-circular-cylinder case, but holds for any 

d 
C 

1 Fk*) = 47rp( - Q k D )  W ,  Ph*) = 4np( -P 7 C) w, 
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finite system of obstacles in a uniform stream. This can be seen by considering the 
surface integral of the forces on a large circular cylinder that includes the system in it. 
Thus we assume 

# = [Psinh 6- &sin 7 + l?(cosh E -  cos q) ]  In (c0sh5- COS 7) 
+ At(cosh 5- cos 7) + B sinh 5 + Ccsinh (+ DEsin 7 

m 

n = l  
+ Z [a, cosh (n+ 1) 5+ bnsinh (n + 1) E+c, cosh (n- 1) c+d, sinh (n - 1) El cosnq 

+ 2 [aAcosh(n+ l)g+bksinh(n+l)E+cAcosh(n- l)(  
m 

n = l  

+dAsinh(n- 1)EIsinny. (23) 

The boundary conditions to be satisfied on the two stationary cylinders 6 = + a are 

- ( + a ) = O ,  % ( + a ) = O .  
a7 a!!i 

The first condition (24a) implies that the stream function takes a constant value 
$( k a) = (c /d)  K*, say, on each cylinder 5 = + a. Hence the conditions can be ex- 
pressed in terms of the function # as 

(25) $(+a) = K*(cosh(-cosT), g( *a) = +K*sinha. 
% 

Substituting (23) into (25), and equating the Fourier components on each side after 
use is inade of the expansion 

m e-na 
ln(cosha-cosq) = a-ln2-2 -cosny, (26) 

n = l  n 

we obbain the following sets of simultaneous equations for the arbitrary constants in 
(23) as well as the K* introduced above: 

(274  1 
Aa-cosh a + Bsinh a - K cosh a = -P(a - In 2) sinh a, 

A(a sinh a + cosh a) + B cosh a - Ksinh a = - P[(a - In 2) cosh a + sinh a], 

-Aa+b1sinh2a+K = P(1-e-2a), 

- A  + 2b1 cosh 2a = 2Pe-2a, 

(n 2 2) (27b) 

( 2 7 4  

1 
1 
n 

b, sinh (n + 1)  a + d, sinh (n - 1)  a = P- [e-(n-l)a - e-(n+l)a], 

(n + 1) b, cosh (n + 1) a + (n - 1) cosh (n - 1 )  a 

1 
n I, = p- [(n + 1) e-(*+l)a - (n - 1) e-(n-l)a 

aicosh2a+c; = -&(ol-l112+~e ), 
-2a 1 

2aI sinh 2a  = - &( 1 - e-2a), 1 
e-(n-l)a e++l)a 

aAcosh(n+l)a+ckcosh(n-1)a = & 
n-1  n + l  

(n+  l)aAsinh(n+ l ) a + ( n -  l)c;sinh(n- 1)a = &[e-(n+l)a-e-(n-l)a I.) 



Low-Reynolds-number $?ow past two cylinders 353 

Here K ,  = K -  s K, and the arbitrary constants other than those appearing in the 
above equations are all equal to zero. Then (23) is found to be expressible in the form 

9 = P[sinh(ln (cosh~-cosy) +A^(coshC;-cosr)+~sinhl 
m + x {b^,sinh(n+l)~+dnsinh(n-l)~}cosny] 

- Q[sinyln (coshl- cosy) + x (6; cosh (n + l)(+ t?; cosh (n - 1) gsin ny], 

n = l  

co 

n=l  

with, from the solutions to (27), 

A 2+cosh2a 
A = F = -  sinh2a ’ 

B 
P 

b 1 + 2e4a 

I? = - = ln2-a+#cotha,  

& -2-- 
‘-P- 2sinh2a’ 

b, - 1 (n - 1) - ne-2a + e-2na 
P n nsinh2a-sinh2na’ 8 =- - -  (29% b )  

A d 1 (n+ i)-ne2a-e-2na 
d = A = -  P9C, 4 , P nnsinh2a-sinh2na’ 

1 - (n + 1) + ne-2a + e-2na 
, -& n + l  nsinh2a+sinh2na ’ 

,La:,=- 

cosh2a c; 1 - (n - 1) +ne” - e-2na 

1 +eZa ’ - Q  n-1  nsinh2a+sinh2na cpz=-=- A l  c; - Inz-a-ie-2a+- %=-- -& 
(29k j) 

Note that the coefficients in (29) are functions only of the parameter a. They are 
therefore determined from (7) in terms of the non-dimensional distance between the 
axes of the two equal circular cylinders, 5 = d/2a. On the other hand, to determine 
the unknown multiplying factors P and Q, it  is necessary to apply the matching 
condition between the Stokes solution (28) and the Oseen solution (10) in 5 5. 

5. Matching to O(1) 

As mentioned earlier, the dominant feature of the far Stokes flow past the cylinders 
is the logarithmic divergence of the velocity due to the Stokeslet. This fact makes it 
possible to perform the matching between the inner and outer expansions to O( 1) in 
a similar way to the case for a single circular cylinder (see Proudman &, Pearson 1957; 
Van Dyke 1975). In  the expansions (3) and ( 5 )  we can put 

f, = I?! = (In R)”, (30) 

and take as $n and Yp) (i.e. the complementary solution to the perturbation equation 
for Y, = YF) + YF)) the Stokes and Oseen solutions (28) and (10) in which the multi- 
plying factors P, Q, G and H are replaced by the same symbols with subscript n. Then, 
the problem is to determine Pn and Q, by applying the matching condition, which 
demands that the asymptotic form of the inner expansion (3) as r + 00 should match 
that of the outer expansion ( 5 )  as P --f 0 in the limit R + 0. 
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The particular solution Yg) of the perturbation equation for Y, appears for n 2 2 ,  
but those that have contributions to the inner expansion of order-unity are found to 
be for n 2 3.  The calculation, however, becomes very complex, and is practically 
impossible to do for all values of n. In the following treatment of the matching con- 
dition, we neglect the contributions from YkP), and consider the matching between @, 
and Ykh) to obtain, in 9 6 ,  the explicit expressions for the forces and moments acting 
on the cylinders, which would be equivalent to those derived from the Oseen equations 
to O( 1) .  This may be significant in considering the fact that there is no separable form 
of the Oseen solution in bi-polar co-ordinates. 

About infinity the function $,(& 7) is written in terms of the outer variables (9) as 

(31 )  R@, = 2P, [?In?- (In R + p )  P] cos 8- 2Q,[Plni -  (In R + q)  Plsin 8, 

where we have omitted the terms of order less than unity, and put 

About the origin the function Y$:) ( f ,  O ) ,  on the other hand, takes the form 

Ykh) = [ (G, sin a - H, cos a) P In P - {G,(g + +)sin a - H,(g - Q) cos a}?] cos 8 
- [(a, cos a+ H, sin a)Pln P- {G,(g + 4) cos a+ H,(g- Q) sin a}r] sin 8, (33 )  

where 

and y is Euler's constant. 
The expansions ( 3 )  and (5 ) ,  substituted by ( 3 1 )  and ( 3 3 )  respectively, are to be 

matched to each other in the limit R + 0, so that the following set of simultaneous 
equations in recursive forms must hold for the unknown constants P,, Q,, a, and H, 

g = + - y = 2 l n 2 ,  (34 )  

(n 2 1 ) :  
G,s~~cT-H,cos~T = 2P,, 

G, cos 

G,(g + k) sin a - H,(g - 4) cos 

+ H, sin CT = 2Qn, 

= 2P,+1 + 2pf',, 

G,(g + 8) cos a + Hn(g- $) sin a = 2qQn- 

The solutions are 

t, - t- 
with 

And we also have the relations 

t* = g-  &(p+q) f *[ (p  - d2+ 2LP-d  COB 2 a +  13'. 

(35 )  

(36 )  

(37 )  
P2 = (g - p  - + cos 2 ~ )  P1 + &Ql sin 2 ~ ,  

Q2 = ( g  - q +  4 cos 2 a )  Q1 + QPlsin 2 a .  

The initial values Pl and Q1 for ( 3 6 )  with ( 3 7 )  are determined from the matching 
condition of the leading term of the inner expansion with the uniform streaming term 
of the outer expansion, yielding 

2 4  = sin a, 2Q1 = COSCT. (38)  
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This completes the determination of all the unknown multiplying factors P, and Q, 
under consideration, and the inner expansion thus determined can be expressed into 
a compact form by taking the summation over all n. It becomes the Stokes solution 
(28), with the multiplying factors P and Q given by 

6. Interaction characteristics to O( 1) 

obtained to order unity by substituting (39) into (22) as follows: 
The expressions for the drag, lift and moment coefficients of each cylinder are 

FL*) cos a + FL*) sin a Cg) = 
4pW2(2a) 

- 477 (2lnR*+1-2g+q*)sina 
= + - h  R* [21nR*-2g+p*+q*]2-[@*-q*)2+2(p*-Q*)cos2~+ 11’ 

with 
h = Asinha+cosha. 

Here we have introduced the Reynolds number 

and put 
R* = W(2a)/~, 

p* = p + h C ,  q* = q+lnC, (43% b)  

in accordance with the change of the reference Reynolds number from R to R*. The 
expression (40a) should especially be compared with the corresponding drag coefficient 
for an isolated circular cylinder: 

The effects of the interaction between the two equal circular cylinders are found to  
be characterized by the three non-dimensional quantities p* ,  q* and h, which are 
functions only of the parameter 5 as shown in figure 2. 
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I I I 
2 3 4 

5 
FIQURE 2. The non-dimensional quantities p*,  q* and h as functions of the parameter 6 = d / k .  

The dashed curves are the asymptotes (45) for 6 -+ W. 

Let us here consider the following three limiting cases. 
(i) c-. co. For the far-apart cylinders we obtain the asymptotes 

p* = &ln6-8ln2+2, 

q* = *ln5-+ln2+4. 

Hence we have the expressions 

I 87r 1 
R* 2 In &R* - 29 + 4 + In Y 
87r 1 
R* 21n +R* - 29- S + In 6 

c,=: -- (g = 01, 

(g = *n). c, = -- 

(45) 

These are exactly in agreement with the results of Kuwabara (1957), who solved the 
Oseen equation by a perturbation method relevant for large 6 under the same con- 
dition R < 1. 

(ii) c-. 1 (a+ 0). It is of interest to examine the values of the quantities p* and q* 
for the cylinders in contact, for which the bi-polar co-ordinates employed become 
singular, and the convergence of the infinite series in (32) becomes very poor. More 
appropriate co-ordinates are tangential ones. However, since they can be obtained 
from the bi-polar co-ordinates by taking the limit a+ 0 in (6), we could derive the 
limiting values of p* and q* from (43) directly. This procedure necessitates some 
manipulation, which we shall describe below. 

After the substitution of (29) and (32u), the quantity p* of (43u) is written as 

1 + 2e-2~ + c -  2sinh2a n=2n  
1 n sinh 2a - (1 - e-2na) - 2n2sinh2a 

n sinh 2a - sinh 2na 
p* = In (tanha) -&a+ Q cotha- 

where the expansion 

9 

(47) 
- 

m e-2na 

ln(tanha) = -2 - (a ’ 0) 
n=1 2n 
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is available for the first term on the right-hand side. In  the limit a -+ 0 the contributions 
from the infinite series can be divided into two parts: one for finite n such that na+ 0, 
and the other for infinitely large n such that na + s, a value ranging from 0 to 00, and 
the latter is transformed into an integral form. Thus we have 

24  1 - s) - (1 - e-%) e-5 '* = '-lnz+Jads[ s(2s-sinh2s) --] s = 0.410. 

Similarly we obtain 
28(l+s)+(i-e-28) --I = 0.112. jomds[ 2(2s+sinh2s) s 

q*=- l - In2+ 

(iii) R* +O. From (40a) and (41) we obtain the relation 

(49) 

This was first found by Fujikawa (1956) on the basis of the Oseen equations. 
It is apparent from the construction of our solution that the asymptote of the drag 

coefficient (40a) as R*+O is reduced to that derived from the leading term of the 
inner expansion (3). In this respect it is worthwhile to note the following. Consider 
generally the low-Reynolds-number flow past any finite system of obstacles. Defining 
the Reynolds number R appropriately, the solution in the matched-asymptotic- 
expansion method always gives fi = 1/ln R, so that the leading term of the inner 
expansion might match the uniform stream term of the outer expansion. This implies 
that the resultant force on the system to O( l/ln R) always takes the same value. It is 
equal to the drag force acting on a single circular cylinder in the uniform stream, and 
when the system is composed of multiple obstacles it must be shared with each com- 
ponent in part. In  particular, for our system of two equal circular cylinders, each 
cylinder must share just half the resultant force with each other by symmetry. This 
gives an interpretation of (51). 

7. Inertial effects 
The hydrodynamic characteristics (40) contain no effects of fluid inertia except their 

dependencies on the Reynolds number due to the singular nature of the two-dimen- 
sional problem at hand. They essentially show the same properties as those for the 
corresponding Stokes flow past two spheres; each cylinder has the same force and there 
appear no lateral forces acting on the cylinders. Actually, the cylinders for CT = in, for 
example, will experience not only drag forces but lateral force components mutually 
repulsive to each other, and a cylinder in the wake of the other will have a smaller drag 
force. In  this section we extend the analysis to incorporate such fluid-inertia effects 
partially by considering contributions from higher-order terms, which have been 
neglected in the previous sections. 

Strictly speaking, all the terms of order unity must be exhausted before considering 
the terms of order R. The calculations are, as mentioned earlier, impossible to do in 
practice. For, since R is transcendentally small compared with any power of l/ln R ,  
we encounter the difficulty of solving an infinite number of perturbation equations 
with successively complicated inhomogeneous terms. But when exclusive attention is 
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paid to the first term of order R in the inner expansion, the term will be easily deter- 
mined from the matching condition with the outer expansion available. 

Following Proudman & Pearson, let us write the inner and outer expansions in thr. 
forms 

m m  mn 

Then the terms treated in 5 5 are those for m = 0, and it is apparent that $o,o = Yo$ = 0. 
Now, the re-examination of the matching process in (52)  and (53) proves that the 

contribution t o  the term R$l,o comes from the matching condition with the relevant 
parts of the terms (lnR)-lYo,l and (In R)-2Y0,2.  In fact, we have 

1 1 
Yo,l = - r sin (8 - a) + - [r In r - (g + 8) r ]  sin (8 -a) RlnR h R  

R 
hlR - Rir2sin 2(8 - a) - - Q(r21n r - gr2) sin 2(8 - a) + O(R2). (54) 

Here we should pay attention to the third term of order R. The other contributing 
term comes from the particular solution of the perturbation equation for Yo,2, and it 
is given by - ARr2sin 2(8 - a). Therefore, in the term RI,~~, that matches these terms, 
the stream function $l,o must satisfy the condition 

$l,o+ - &resin 2(O - a) as r -+ 00, (55) 

as well as the no-slip condition on the cylinders. Moreover, the function is found to be 
governed by the Stokes equations. Hence the stream function $l,o represents the 
Stokes flow around the two cylinders placed in the purely stretching flow (55)  with the 
second principal axis parallel to the uniform stream, and it can be solved in terms of 
the solution (23) as well. 

The $-function version of (55 )  by (15) becomes 

with 
3c 3c E ---cos2a E --sin2a. 

16d - 32d c -  

Let us amume the flow to be expressible as the superposition of (9 and $ in (15). Then, 
applying the no-slip condition we obtain the function g5 in the following form: 

I m 
g5 = Ec[&sin7+ C {6~sinh(n+l)5+d~sinh(n-l)c}sinny 

n= 1 

+ E,  P(cosh t- cos 7) In (cosh 5- cos 7) 

+ 8E sinh E + m 
[ 

{a, cosh (n + 1)  5 + C n  cosh (n - 1)  c} cos 1271 , (57) 
n = l  
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- - 

7 

I I 

0.10 I I I I 

where 

(58% b) 
d -  D - 1-cosh2a 6' - -- bi - 1-(1+2a)e-2a 

Ec 2a cosh 2a - sinh 201' '- E ,  2acosh2a-sinh2aY 

t C 2 2 sinh2 a 
E, 

o=-= 
2a + sinh 2a- 2a + sinh 2a 

(58g)  
4a + 4 sinh 2a - sinh 4a 
2(2a+sinh2a)sinh2a + 2(2a+sinh2a)cosha 

(261 cosh 2a + sinh 201) sinh a A r, 
1 (n+ 1)-ne-2axee-2naA (58 h) 

(n 2 2). 

( 5 8 i )  

The coefficient f ,  which remains unknown, is determined from the boundary con- 
dition (55) a t  infinity. The rigid-body rotation which appears in the asymptotic form 
of (57) as r +- co (see (16)) must vanish, so that we have the condition 

an - - (n - 1) + ne-2a + e-2na 
E ,  

E ,  nsinh2a+sinh2na n(n-1) nsinh2a-sinh2na 

a =-- +- 
n sinh 2a + sinh 2na 

= c, = - (n+ 1) +ne2a-e-2na 

n(n + 1) n sinh 2a + sinh 2na 

1 (n-l)-ne&+e--fnaA r +- 

a, ._ 

z (a,+&) = 0. 
n=l  

(59) 

This gives an equation for ?, thus determining all the coefficients in (58)  completely. 
The corrections to the hydrodynamic characteristics (40) to the lowest order in R* 

are therefore obtained from (22), and yield 

Cb*) = 8n(D cos u + C sin U) 5, 
CL*) = f 8r(C cos u - D sin U) g, 
C g )  = - 4n( r sinh a + C cosh a) g. 

(60 4 
(sob) 
(604 

As can be seen from (56b), (58)  and (59), the quantities S = - D/cos 2u, K = C/sin 2a 
and 7 = (I? sinh a + C cosh a)!sin 2u are functions only of the parameter a, and their 
dependences on the parameter y are plotted in figure 3. 
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FIGURE 4(a, b) .  For caption see p. 362. 
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FIQURE 4. Parametric studies of the drag, lift and moment coefficients of the two equal circular 
cylinders. The solid curves for (40) plus (50) are to be compared with the dashed curves for (40) 
which contains no effects of fluid inertia. The dotted-broken curves are Yano & Kieda's (1980) 
results based on the Oseen equations, and the solid circles are the experimental data of Taneda 
(1957). (a) Variations of relative drag coefficients C,/Cg with R* for 5 = 10 and u = 0" and 
90". (b)  Variations of lift coefficients C, of cylinder 1 with R* for g = 10 and u = 45", 90" and 
135". (c) Variations of moment coefficients C, of cylinder 1 with R* for 5 = 10 and u = 45" 
and 90". (d) Variations of relative drag coefficients C,/Cg with 5 for R* = 0.01 and u = 0" 
and 90". (e) Variations of lift coefficients C, with 5 for R* = 0.01 and u = 45" and 90". The 
solid curve for u = 90" is independent of R*. The dashed curve is for R* = 0.1 and the solid 
circle is Taneda's datum for R* = 0.015. (f) Variations of moment coefficients C,  of cylinder I 
with gfor R* = 0.01 and u = 45" and 90". 

8. Concluding remarks 
Applying the method of matched asymptotic expansions we have analysed the low- 

Reynolds-number flow past two equal circular cylinders. The analytical expressions 
for the drag, lift and moment coefficients of the cylinders, (40) plus (50), could be 
successfully obtained by using bi-polar co-ordinates to describe the Stokes solutions 
in the inner expansions. Note, however, that there exists an upper limit of the par- 
ameter y or R* above which our analysis is no longer valid. In  the analysis each cylinder 
must be positioned so that the disturbed flow generated by the presence of the other 
cylinder in the uniform stream is governed by the Stokes equations. Thus we have 
the conditions 

R = R*g< 1 < g. (61) 

In figures 4 (a-g) the graphs of the above hydrodynamic characteristics are plotted 
for comparison with other results. I t  is noticeable that the lift coefficient C, €or 
t~ = 3 ; ~  shown in figure 4 ( b )  does not depend on R*, and retains an intrinsic value as 
R* -+ 0. It also seems to be in good agreement with Taneda's (1957) experimental data. 

The author wishes to acknowledge the helpful suggestions made by Dr D. J. Jeffrey. 



Low-Reynolds-number $ow past two cylinders 363 

REFERENCES 
DAVIS, A. M. J., O’NEILL, M. E., DORREPAAL, J. M. t RANQER, K. B. 1976 J .  Fluid Mech. 77, 

DEAN, W. R. & MONTAQNON, P. E. 1949 Proc. Camb. Phil. Soc. 45, 389. 
DORREPAAL, J. M. t O’NEILL, M. E. 1979 Quart. J .  Mech. .Appl. Math. 32, 95. 
FUJIKAWA, H. 1956 J .  Phya. SOC. Japan 11, 690. 
FVJIKAWA, H. 1967 J. Phya. SOC. Japan 12,423. 
JEFFERY, G. B. 1922 Proc. R. SOC. A 101, 169. 
JEFFERY, D. J. BE SHERWOOD, J. D. 1980 J .  Fluid Mech. 96, 316. 
JEFFREY, D. J. t ONISHI, Y. 1981 Quart. J .  Mech. Appl. Math. 34, 129. 
KAPLUN, S. 1967 J .  Math. Mech. 6, 595. 
KUWABARA, S. 1957 J. Phya. Soo. Japan 12, 291. 
MOFFATT, H. K. 1964 J .  Fluid Mech. 27, 1. 
MOFFATT, H. K. t DUFFY, B. R. 1980 J .  Fluid Mech. 96, 299. 
O’NEILL, M. E. 1964 Mathematika 11, 67. 
PROUDMAN, I. & PEARSON, J. R. A. 1957 J .  Fluid Mech. 2, 237. 
RAASCH, J. K. 1961 D. Eng. thesis, Karlsruhe Technical University, Karlsruhe, Germany. 
STIMSON, M. & JEFFERY, G. B. 1926 Proc. R. SOC. 111, 110. 
TANEDA, S. 1957 J .  Phya. 8 0 0 .  Japan. 12, 419. 
TOMOTIKA, S. t AOI, T. 1950 Quart. J .  Mech. Appl. Math. 3, 140. 
VAN DYKE, M. 1976 Perturbation Methods in Fluid Mechanics. Parabolic. 
WAKIYA, S. 1975 J .  Phys. Soc. Japan 39, 1603. 
YANO, H. t KIEDA, A. 1980 J .  Fluid Mech. 97, 157. 

625. 


